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' SOME NOTES ON THE NUMBERSCAL SOLUTIOE 

OF SHEAR-LAG AND MATHEMATICALLY RELATED PROBLEMS 

By Paul Kuhn 

SUMMARY 

The analysis of box beams with shear deformation of 
the flanges can be reduced to the solution of a differ- 
ential equation. The same equation is met in other prob- 
lems of stress analysis. No analytical solution8 of this 
equation can be given for practical cases, and numerical 
methods of evaluation must be used. 
are briefly discussed. 

Available plethods 
Two numerical examples show the 

application of the step-by-step method of integration to 
shear-lag problems. 

INTRODUCTION , 

When a box beam is subjected'to bending moments, the 
stress distribution differ8 somwehat from that given by 
the ordknary theory of bending. The reason for these dif- 
ferences, denoted by the term ushear-lag action,tt lies in 
the fact that the cover sheet suffers appreciable shear 
deformations, particularly after it buckles into diagonal- 
tension fields. Under certain simplifying assumptions 
discussed in reference 1, the analysis of this problem 
leads to a differential equation of the'type 

In this equation, x is the distance along the span, 
and y may denote, 'for instance, the bending stress in 
the flange, or the shear stress in the cover* The mean- 
ing of R1 and K8 depends on the meaning assigned to 
Y* . -. e *.. 

When a box beam is subjected to torsion, there will 
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be in general a tendency of.the cross sections to warp out 
of their plan-e. At the support, this warping is more or 
less completely prevented and bending stresses arise (ref- 
erence 2). Under certain simplifying assumptions, the 
analysis of this problem also leads to an equation of type 
(1). 

The same eq,uatfon is obtained in a number of other 
cases. A quite well-known case is the beam under combined 
lateral loading and axfal tension (reference 3). 

Analytical solutions of equation (1) can be given 
when Ic, and Ks 
x (ref.erence 3). 

are constants or simple function8 of 
In many practical problems, however, 

Kl and Ks vary along the span In a manner that is dif- 
ficult to define by simple mathematical functions, a dif- 
ficulty occurring particularly in box-beam problems. It 
is therefore necessary to use numerical methods for fhe 
solution of given problems. 

NUMERICAL METHODS OF SOLUTION 

All methods to be discussed in this paper depend on 
the assumption that it is permissible to divide the beam 
into a limited number of bays (5 to 10) and that the co- 
efficients K, and Ke may be assumed to be constant 
within each bay. This assumption, and the methods used 
for the solution of the differential equation, make the 
solutions inherently approximate. The state of affairs 
is comparable,with the engineering usage of applying the 

PC 

formu1a cT= -i- to tapered beams. 
. 

Trial-and-error method --l---l_l_ .- .In reference 4, a somewhat 
unorthodox trial-and-error method was described for ob- 
taining solutions of shear-lag problems, The method was 
found to be very rapid; under favorable circumstances, tlK0 
cycles of the computation were sufficient to obtain an 
accuracy consistent-with the conditions of the problem. 
The speed with which the analysis .can be made, however, 
depends critically on the skilland the experience of the 
analyst. St therefore appears desirable to provide other 
methods of analysis that are less dependent on or entire- 
ly independent of the skill of the analyst. Another dis- 
advantage of the trial-and-error method is that it beoomea 
very cumbersome trhen ap'plied to cases in which the bound- 

c- 

l 
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ary conditions differ from those discussed in reference 4. 

l 

4.. 

Fixed-point method.- -- 
no arbitrary trial 

A grsphical method that requires 
assumptions'mhatever has been described 

by L. Hirste. In reference 5, the,.method wasapplied to the 
problem of bending stresses due.to to‘+sion; in reference.6, 
it was applied to the beam-column problem.' Reference 6 be- 
ing easily available, the details of the method need not be 
given here. .- . 

- 
The outline of the procedure is as follows. From one 

end of the beam, the boundary condition given at this and 
being utilized, a sequence of "fixed points" to the other 
end of the beam is constructed. Then the other end has 
been reached, the boundary condition g'iven there is uti- 
lized to find the first point of the desired curve, which 
is then established by working back to the original start- 
ing point with the aid of the curve of fixed poJ.nts. : 

. 

For'purposes of comparison with arithmetical methods, 
the drawing,of the curve of fixed points may be counted 

'as equivalent to one cycle of computation; the dratiing of 
the desired curve, a8 equivalent to a second cycle, Fur- 
thermore, converting the gfven data into a graphical fig- ' 
ure and scaling the final curve to obtafn the numerical 
answers should be counted as equivalent to one cycle of 
computation. It may be said, therefore, that the graphi- 
cal method fs equivalent to a three-cycle arithmetical 
method. 

51 

A- 

The neatness and the straightforwardness of the 
fixed-point method are fmpressive. ,'It La doubtful,. how- 
ever, whether it will be possible in some cases to achfeve 
the necessary accuracy by graphical means. TSere'*areslso 
practical objections to graphfcal methods on the grounds 
of ease of checking, filing, and transmitting computations. 
For such reasons, graphical com$utations ,818 usually em- 
ployed only when they save considerable time as compared 
llcith arithmetical methods. It is very questionable whether 
t.he fixed-point method has a very marked advantage over 
the step-by-step zntegration method to be next deacrfbed. . 

Step-by-sten integration method.- An.drthodox step- -- 
by-step integration method may beyzd either 'in semi.2 

' graphical or in numerical form. Only the nunerica.1 fOFm 
will be described here because it is believed to .b,e pref- 

" erable for all-around use. 
. . 
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It is impossible to start the final integration at 
either end of the beam because only one boundary condition 
is given at either end. It is therefore necessary to make 
an arbitrary trial assumption for the unknown boundary con- 
ditfon at one end.before starting a first integration. 
When this first integration is completed, the boundary con- 
dition at the far end will not have been met (except by 
accident). A second integration 38 therefore made, start- 
ing with a different inftial assumption for the unkown 
boundary-condition and resu'ltlng in a different error of 
closure. If the errors of closure are plotted against the 
init-ial-assumpt1on6, it is possible to find what initial 
assumption must be made tu reduce the error of closure to 
zero. 

The graphical form of this method was described in 
,reference 7 as applied to the beam-column problem. One 
quite important point, however, was apparently not noted 
or at least was not speciffcally mentioned in thie paper. 
The curve of error of closrire against initfal assumptions 
is a straight line. Consequently, two trials are suffi- 
cient, in principle at least, to determine the desired in- 
itlal assumption, and it will not b-e Kecessary to make more 
than three cycles of computation. The third cycle will 
be the final one, a fact that may be used as a cheek 
against--errors of computations. 

In the appendix, detailed examples are given which 
show the application of the numerical procedure to.shear- 
lag problems. The basic theory and the nomenclatu?e is 
taken from reference 1. 

Remarks on the accuracy --I--------_ of numerical'solutions.- The ----- 
errors of numerical solutions Gf b-e divided %nto three ' 
classes! 

1. Errors arising from using a small number of eig- 
nificant figures. 

2. Errors arising from using bays of finite length. 

3. Errors arising from the assumption that the coef- 
ficients .are constant in a bay. 

Errors of the first class are important only when the cal- 
culation involves small differences between large figures. 
In most cases, this difficulty can be overcome by using a 
calculating machine; ordinarily a slide rule is sufffcient- 
ly accurate, 
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A different method of overcoming the difficulty is 
to rearrange the computation so that no small differences 
are involved. In the case of shear-lag problems, this 
rearrangement can be accomplished by writing the equa- 
tions not for the actual stresses but for the corrections 
that must be applied'to the stresses given ‘by the ordi- 
nary bending theory. (See appendix.) This procedure is 
probably more rational than the first one in several re- 
spects: , . 

The magnitude of the errors of the second class can 
be estimated by making comparisons with known analytical 
solutions. For simple cases, it was found that five or 
six bays often give sufficient accuracy (about 1 percent). ' 
One rather extreme case investigated was a beam column 
wfth a compressive load near the buckling load (L/3 = 3). 
In this case, the half-beam had to be divided into 10 
,"b;;; )(Onlp the half-b earn was used on account of sym- 

. 
-..-- 

Errors of the third class. can also be appraised by 
making comparisons with analytical solutions; they ap- 
pear to be of the same order of magnitude as the errors 
of the first two classes. , 

The conclusion may be drawn, then, that the necessity 
for making "approximate" numerical solutions of the dif- 
ferential equation (1) is not, in general, the factor 
limiting the practical accuracy of the results. The fac- 
tors limiting this accuracy are the simplifying assump- 
tions, physical and mathematical, that must be made to 
reduce the problem to the solution of a simple differen- 
tial equation. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., March 31, 1939. 

, 
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AFPEMDIX 

t 

Yi_ 

, 

AFPLICATION OF THE METHCD OF STEF-BY-STEF INTEGBBTION 

TO SHEAR-LAG PROBLEMS 

The differential eouations of the shear-lag ---- -- theory.- 
Two static equations and one elastic equation form the 
basic equations of the shear-lag theory for box b'eams with 
flat covers (reference 1). 

Stv 0's' AF= -- Tt 
h 

uL' A II = 7t (2) 

(3) 

The symbols used are those of reference 1. The prime de- 
notes differentiation with respect to x. The x origin 
will be taken at the tip of-the beam for all cases. 

The basic equations can be used to form the follow- 
ing- differential equations. 

q’ _ K2 cL + KS -# = 0 
hAT 

7 I’ 5-v AL - KS q- + KS --- = 0 
ht AT 

. 
where 

. 

(4) 

(5) 

(6) .- l 

*- 

-+ 
(7) 



. 
N.A.C.B. Technical Note No. 104 7 

-1 

” 

i 

..* 

For convenience, the boundary conditions are summarised 
in table I. . - . 

It will be noted that the equations for OF and aL 
are identical, so that c3 and cL can be obtained by 
solving the same differential equation for different 
boundary conditions at the root. It will be found, how- 
ever, that the stresses obtained in this manner satisfy 
the equation of static equilibrium with the external mo- 
ment only at the root and at such stations along the span 
where the ratio "FIAL is the same as at the root. If 
this ratio varies radfcally along the span, the solution 
will be reliable only near.the root. 

The numerical evaluati'dn.o,f the equation's requires 
the computatfon of'the second derivative. 
(4). .for example, 

From equation 1 
. .A- ..-.- ._- 

(8) 

This expression may be very small over a.large part of 
the span, making it necessary to carry's large number of 
significant figures. It is therefore better to write the 
differential equation for the expression in parentheses,, 
which is the correction that must be added to the stre,ss 
calculated by the ordinary bending theory to account for 
shear lag, because c = Y/MT is the stress calculated 
by the ordinary theory. : 

If this correction is denoted'by 

u = UF -' -5 
MT 

the differentias equat'ion becomes '. 

U” -Keu=O (10) 

where K has the same meaning as before. Thfs equation 
can be solved by Step-by-step integration, but the solu- 
tion is somewhat easier than the solution of one of the 
equations (4), (5). or (6); 
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In analogy with equation .(9), the correction for the 
stress OL may be defined by ' 

?A 
v=--- 

hAT 
DL 

giving the differential equation 

Tga> 

V” - x= v = 0 (lOa) 

The solutions of -(la) and (lOa) for any given problem 
again fail to satisfy the equation of -static equilibrium 
with the external moment except at the root and at those 
stations where the ratio AF/AL is the same as at the 

root. The discrepancy was always found to be smaller than 
when solving equations (4) and (5). For general use, 
equation (10) therefore appears to be the best choice. 
The stresses T and cL can be found from statics after 

U, and therfore oF, have been found. 

The equations discussed thus far apply to box beams 
with flat covers, For box beams with camber (fig. 2), 
equations corresponding to (4), (5), and (6) could be 
written. As in the case of.beams without camber, it ap- 
pears to be more convenient to use equation (10). Th e 
constant K in equation (7) is then changed to 

, 

c . 

+L 
AL 

(?a) 

Example 1 

Find the stress aF in the axially loaded panel shown 
in figure 3. The following data are given: 

P -- = 1.00 
AT AF = AL = 1 AT 

2 
L = 2.00 

,- 

““=k+++)= 1.00 
E b AF AL - 
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(These numerical values.were chosen to emphasize method 
rather than arithmetic. They do not imply impractical 
sizes; they imply merely unconventional units for stress 
and length, which need not be specified here.) 

The panel will be divided fnto five bays. Stresses 
and other functions at any station will be designated by 
a .subscrfpt denoting the values of X/L in tenths; for 
instance, o4 designates-the value of oF at the station 
X/L = 0.4, -_ 

Two trial values must be aosumed for ffl'. If the . 

shear stiffness were infinite, the stress would be con- 
stant, and the corresponding value a' = 0 will be used 
as the first trial value. If the shear stiffness is 

- 

large, but finite, the value of CT at the root wfll be 
nearly 

. 

F i -. 
clo = - = 1.00 

AT 

while at the tip 

o. = 5-z 2.00 
AF 

.- -1 
Assuming that the stress decreases linearly between the 
tip and the root gives 

A0 1.00 c" = -= -zoo= -0.5()0 
Ax . 

This value will be used for the second trial. 

Table II show6 the arrangement of the computation. 
The start of the first cycle of computation is a6 follo~w6. 
At x/L = 0, the known boundary value cr = 2.000 is writ- 
ten down. The first trial value for ol' is zero; there-. 
fore, . 

1 .L * z-i - =s ---. -_ 

APo-a = a'& = 0 x 0.400 = 0 

and consequently 



10 N.A.C.A. Technical,Note No. 704 

oa = uj,+ /Jo = 2.000 -I- 0 = 2.000 

Non, using equation (4) in the form 

Dn II = Kn2 a, " Kn2 5 CL) 
n 

gives 

Q" = 2.000 - 1.000 = 1.000 

(The subscript n denote6 the station number and is added 
her-e to indicate .that, in the generhl case, K2 and P/AT 
vary along the span.) 

Thereforo 

Au,-,' = Da" AX = 1,000 X 0.400 = 0.400 

Adding this increment to the va1ue at the preceding sta- 
tion qiv-es 

%’ = al' -I- AQ-~' = 0 + 0.400 = 0.400 

From here on, the computation repeats itself in principlQ. 
From the slope at just found, the increment Aa 16 caL- 

culatod. Adding this ircroment to the stress at the pre- 
ceding; station gives the stress at the new Station. Using 

the differential. equation gives a", etc. In the general 
H and P/AT case, will be differenkfor each station; 

the table would therefore include a row for K60 and a row 
for Ka hI/hAT. 

, 

w- 

Since an axially loaded panel can be considered as 
the cover of a beam in pure bending, the boundary condi- 
tion that must be satisfied at the root is, according to 
table I, ,' ?' -. 

SW- 
(rlO’ = -- E 0 

MF 

In the first two trials, the value6 of %O obtained are - 
2.905 end 1,047, respectively. 
aro obtained by adding l/2 AxaU to . 

(Note t$t)these value9 
Thosa valua 6 

of crt ara obtained by.a'ssuminq ~~1 = 0 and (pi = -0.500, I 
rosgcctivoly; by proportion, it is found that 0'11 should 
be taken as -0.782 to satisfy tha condition 6,o' = 0. This 
initial value of f.+ was used in the third cycle of tho com- l 

putation; the computation shows that ho' = 0 as required 
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(mith a vary small arror). Comparison Of the Stresses 
with those found by formula (roforonco 1 or 2) show5 that 
the error in the root stress is 0.3 percent. 

Example 2 -- 
As a second example,', the analysis of a tapered beam 

with cambered cover will be given. The beam chosen is '- -- 
N.A.C.A. beam 4; the dimensions of this beam, as well a6 
the results of strain-gage' tests, are given in reference 
1. Tpkie methods used in obtaining the basic data given 
in table 111,row.s 2 to 6, will'be briefly outlined. 

The compression flanges, the tension flanges, and 
the longitudinals are assumed to be concentrated at their 
respective centroids. The cover sheet is assumed to be 

,fully effective in aiding the longitudinals, and the'ad- 
jaCt3nt Strip6 Of sheet are added t0 the longitudinals or 
flanges. The web is also,assumed to be fully effective 
in bending and is replaced by concentrated flanges of 
cross-sectional area l/6 Aw. 'The area of the 11sub6tftute 
longitudinal" is calculated by 

-.. 

ALS 
sinh K,b 

= AL --- 
=0 

which is formula (4) of reference 1; the "substitute cam- 
ber" is taken as cs = l/2 c. The thickness of the cover 
sheet is 0.0114 inch, and the ratio G/E is taken as 
0.40. 
of k2 

Bith the values given in rows 2 to 6, the values 
can be computed by formula (7a). 

If an arbitrary value of UI = 1.00 is assumed for 
the first bay, a Step-by-step integration of equation (10) 
can then be made, as shown in row6 8 to 12. 

According to table I, the boundary condition that 
must be fulfilled at the root is . 

SIP-h ul = --- 
hAy AT 

Now at the root 
M 

% 
=p- - tan a = 0.473 P 

.h 
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. 0;473 P x 0.463 
ul = -- 

5.70 X 0.177 X 0.640 

For an applied load P of 250 pounds, this equation be- 
comes 

U’ = 85.0 

The value obtained in the trial solution is u1 = 247.1, 
so that the final values for u are obtained by multi- 
plying the u values of the trial solution by . 
85.0 --- = 0.344. These ffnal u values are given in row 

247.1 
13. 

MC In row 14 are given the values of-.--a=.-, that is, 
I 

the flang-e stresses obtained by the ordinary bending the- 
ory, using the geometric properties of the beam given in 
reference 1. Adding the u values t-o the D values 
gives the final solution as shown in row 15. Pigure 4 
gives a comparison between calculated and experimental 
stresses. 

- 
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EbhAF 

M *II i =j - -- 
hziT *F 

' '0' = 
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TABLE I 

BOUNDARY CONDITIONS 

----- 

Longitudinal 
built in , . ------- 

aF' 
SW = -- 
MF 

DL’ = 0 

7 = 0 

SW -AL ut =--- 
hAF AT 

SW +=z- T 

Root (x = L) I 
.----------.ed-: 

Longitudinal 
not built in 
,---L-m-- 

k cTF = --- 
MF 

OL = 0 

Tt = GeM- 
EbhA, 

,M AL u=---- 
hAF 'T 

M 
v=- 

MT 

t 

‘ . 

m-,--A-- 

Elastically yielding 
stipport (fig. 1) 

.--------------- 

aI? r = I- I %v 2 Y 0, 
hr'F AF 

DL z&G, ' 
AL 

7 = Y G, 

SW AL ut = -- - . 2 y (J* 
MF AT 'F a 

VI =-2YG, SW 4- 

MT *IL 
- -- .- 

I 
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TABLE II 

SHEAR-L.kG ANALYSIS OF AXIALLY LOADED PANELS 

x/L( 1 10.2 1 10.4 1 iO.6 1 10.8 1 1.0 

Zirst tri 
0.400 

.160 

I 
.16Q 

ution .l sol 
0.864 

.- .: 
2.905 

--- 

4.013 

3.013 

1.205 i 
T 
- -i- 
i 

T 0 

0 

CT’ 

ACT 

0 2.000 

CT” 

AU' 

0' 

AD 

T 

o- . 000 

CT'* 

CO' 

2.303 

.921 .346 

3.052 

2.092 

.837 

2.000 

1.000 

.400 

Second tr 
-0.120 

-.072 

1.728 

.728 
. 

Lution 
0.420 

---I- 

.168 

1.772 I 1.940 

al s( 
0.111 

.044 

1 - 

I - 

Final solution 

-0.507 

-.203 

-0.50( 

-.20( 

0.796 1.047 

.318 

2.258 

1.258 

,503 

1.800 

.8OC 

.320 

.772 ,940 

.309 .376 I .291 

I 1 
J . 

1 

-0.722I 

-.313 

-0.313 

-.125 

0.053 

-.021 

0.(301 0.169 

-.06& 

1.291 

.%91 

.116 

1.276 

.270 

.108 

1.484 

.484 

.194 

1.359 

.359 

.144 

.ooo 1.687 

.667 

.275 
-- 

Analytical solution _ 

CT 2.000 1.684' 1.462 1.355 1.2S7 1.266 
I 



TABLE III 

Sm-UG AULYSIS OF TAPEREDBUM WITH tZ&WXED COP&R 

19 38 
3.30 3.90 

,150 .157 
.272 .320 

7.32 8.54 
.67 .78 

.00729 .a575 

3.63 13.23 
68.9 251.5 

19.0 87.9 .- 
.1385 .505 

2.63 9.60 
7 30 

1,795 2,6so 
l,Em 2,720 

1 I 1 

f 57 76 
4.50 5.10 

,163 ,170 
.367 Al6 

9.76 10.98 
.90 -x01 
.00472 l 394 

43.68 131.: 
830 2,490 

339.4 1,169 
1.603 4.60 

30.45 87.4 
117 402 

2,920 3,040 

3,037 3,a 

I I I 

7 

1 

-L 

95 
5.70 

.177 

.463 
12.20 
1.13 

.00334 

1247.11 

3,659 
l2.2;3 

232.0 
1,260 
3,015 
4,275 

! . 
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I x Experimental 
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I 

--6d MC/I (no shear lag) 
dF {with Shear lag) 

80 60 40 20 0 
Distance from tip, in. 

Figure 4.- Comparison between calculated and experimental stresses 
in N.A.C.A. beam 4. Data from reference 1. 


